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1.0 INTRODUCTION

In the design, development and testing of attitude determination and processing algorithms, it
is necessary to perform at least a rudimentary simulation of the satellite orbit and data from the
attitude instruments. This is especially true for actively controlled satellites, since the attitude
characteristics depend on the interplay between the environmental torques and control
mechanisms of the satellite. In order to assess the feasibility of computational techniques,
realistic data must be generated. Sirmulation is also necessary for the generation of software test
data and it is valuable in that it gives one a sense of the type of behavior to expect, although
perhaps not in a truly precise manner, before launch. This often dramatically decreases the
start-up time for data processing. This report details the modeling carried out for the Advanced
Photovoltaic and Electronic Experiment (APEX) satellite (P90-1). It describes the algorithms
selected for the post-flight Orbital Data Processing System for calibration of the magnetometer
and for attitude computation. As a by-product, several interesting features that may be present
in the APEX attitude behavior are noted.

The APEX satellite suppor!g three experiments; the Photovoltaic Array Space Power Plus
Diagnostics (PASP-Plus) experiment, the Cosmic Ray Upset Experiment/Cosmic Ray
Environment and Dosimeter Experiment (CRUX/CREDO), and the Ferroelectric Memory
Experiment (FERRO). Attitude control requirements are strictest during sunlit operation, when
the sun must be normal to the solar arrays to within one-half degree. This requires the
spacecraft x-axis to be collinear with the sun direction to this precision. A second, less precise
requirement is that the dosimeter (spacecraft y-axis) lie in the ecliptic plane to within 5'. There
are no set requirements for attitude knowledge, however, knowledge must be sufficient to assess
the level of control. For the APEX satellite, assessment of the degree of attitude control is the
primary purpose of post-flight attitude computation.

The attitude determination instruments aboard the satellite consist of a two-axis sun sensor,
which measures the sun normal vector directly, and a magnetometer, which can be used to
calculate the roll angle during sunlit operation and three-axis attitude in eclipse. Knowledge of
the x-axis relative to the sun is thus readily available when the solar panels are illuminated. The
secondary requirement for roll axis attitude in sunlight and three-axis attitude in eclipse must be
evaluated from magnetometer data alone. Such calculations are unvaryingly quite sensitive to
calibration errors and to spacecraft induced fields, so that calibration of the instrument arnd
evaluation of the spacecraft cleanliness become synonymous with attitude determination.

The purpose of this work is to investigate the dynamics of the satellite under 'nominal'
conditions, to define and assess algorithms for calibration of the magnetometer and for attitude
calculation and ultimately to demonstrate that attitude can be calculated with sufficient accuracy
for determination of the degree of attitude control. It is not the subject of this work to dctermine
whether such control will be possible in flight, however, we would like to be reasonably sure
that the attitude is calculated properly should non-nominal situations arise. In the next section,
the attitude is defined. Following this, we discuss the modeling of the APEX ephemeris,
environmental torques and control laws. Finally, we demonstrate the algorithms chosen for
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magnetometer calibration and for attitude calculation. In the course of this work, we are able
to arrive at some rough estimates for the accuracy of the calculated attitude.

2.0 DEFINITION OF THE ATTITUDE

Generally speaking, it is possible to define the spacecraft .ttitude in several ways, so long as the
process of computation and utilization of the attitude solution are based on the same definition.
However, because the APEX data stream contains an on-board attitude solution as well as raw
sensor data, it is necessary to adopt the same definition for post-flight determination as is used
in the on-board solution.

The APEX attitude is defined by three angles, the values of which are simultaneously zero when
the spacecraft is in its nominal attitude. This nominal attitude consists of the spacecraft x-axis
pointed directly toward the sun and the spacecraft y-axis resting in the earth's ecliptic plane.
These three angles are further defined by rotations about the three spacecraft axes. These angles
will be called Ox, 0y and 0z in what follows. Figure 1 shows these angles and their relationship
to the defining sun and ecliptic vectors. All three of these angles are defined as the rotation
which the spacecraft has undergone away from its nominal position. This means that, when the
sun is in the quadrant shown in Figure 1, 0, is negative and 0y is positive. (Positive rotations are
taken to be clockwise looking along the axis of rotation.) Thus, 0, is the negative of the first
measurement of the sun sensor and 0y is equal to the second sun sensor measurement. 0y and
0, are called pitch and yaw respectively by the designers of the APEX Attitude Determination
and Control System.

The roll axis is defined with the same sense as well, if the spacecraft y-axis has rotated in a
clockwise manner from the ecliptic plane with respect to the x-axis, the angle is positive. There
is an ambiguity in the definition, however, depending on whether the spacecraft y-axis points
toward or away from the earth as the satellite moves toward the sun. These two cases are
shown schematically in Figure 2. If the satellite is in configuration 1 and the y-axis is above
the plane, a negative rotation about the x-axis has taken place. If in configuration 2 and above
the plane, the rotation was positive. We will allow for both these cases in what follows. The
configuration can be easily deduced from the sign of the z-axis magnetic field. 0, is known as
roll in the APEX system.

2.1 CONVERSION TO INERTIAL COORDINATES

In order to perform attitude simulation and determination, it is necessary to transform hetween
the 'natural' system of 0,, 0Y and 0., or equivalently, pitch, roll and yaw, and an inertial frame
in which the directions of geophysical vectors and the spacecraft position are defined. One
convenient frame is Earth Centered Inertial (ECI) coordinates. In this system, the z-axis is
coincident with the Earth's rotation axis and the x-axis points toward the vernal equinox in the
ecliptic plane. We transform pitch, roll and yaw to ECI as follows:
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Sun
X(s/c)

e BY

Z(s/c)-

Ecliptic

Y(s/c)

Figure 1. Pitch, yaw and roll angles defining the APEX attitude. In this example, the sun
vector is above the plane of the paper and the spacecraft axes have moved by ox', 0y and
OZ•
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Configuration Configuration
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x x

Y Y

z parallel z anti-parallel
north pole north pole

Figure 2. Two possible configurations satisfying the nominal attitude requirements.
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The first step taken is to express the components of the reference vectors, the sun and the
ecliptic vector, in spacecraft coordinates. The sun, denoted (x, y, z) is obtained from Figure
1. We see that

Ys = -x'tanOZ Zs = xstanOV (!)

Knowing that x, is a unit vector, we find

x, + y, + z; xI-( 1 + tan-0o + tan-20). (2)

which gives

x, = (I +tan 2oV + tan 2o,)-1/ 2  (3)

without ambiguity since the x-axis is sun pointing and therefore x, > 0. The ecliptic vector is
the intersection of the ecliptic plane and the spacecraft yz-plane and is easily located in
spacecraft coordinates. From Figure 1,

xe = 0

Y, = cosox (4)

Ze = -sinO.

The z-component has a reversed sign since the roll angle is measured from the ecliptic vector
by definition. (This angle is negative in Figure 1.) Another useful quantity is the angle between
the sun and ecliptic vector

CoSoes = xs Xe (5)

We next need to find the ECI coordinates of the two reference vectors. The sun position,
denoted by (u, v, w,), can be found from any of the several solar ephemeris models. The right
ascension and declination of the sun are given respectively by

US = tan -1v 6s = sin -1 wI (
us

Now, since 0., is the same in both coordinate frames and since the declination of the ecliptic
vector is zero by definition, we have

cosoes sk[cosescosoe, + sina, sina] (7)
= cos5,cos(a5 - a)

in which at is the right ascension of the ecliptic vector. Now, since -7r/2 < K, < -r/2 and since
for APEX, 0,, = r/2, we must admit to two solutions.
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W = c T Cos-I(cosOes/cosbs) (8)

A look at Figure 2 shows that the subtractive case corresponds to configuration 1 and the
additive case to configuration 2.

Now, the spacecraft frame basis vectors xs and x. are used to form an orthogonal set as follows

X1 = XS

X2 = XsXxe/I xXxe (9)

x 3 = x 1 Xx 2

and the ECI vectors are used in the same way to form ul, u, and u3. T.ie t',o sets of vectors
define a body matrix and a reference matrix

MB = 1[x X:2 X 3J MR =[U1 U2 3U (10)

The attitude matrix A.'., consisting of the components of the spacecraft axes in ECI coordinates,
will transform MR into MB

MB = As/cMR (11)

and so the solution can be found.

A U M M (12)S,,C S/: [ S/C ! s/c] = MBMR-

This rather lengthy set of operations completely specifies the attitude of the spacecraft when
given pitch, roll and yaw. We now turn to the opposite transformation.

2.2 CONVERSION FROM INERTIAL COORDINATES

Given A•/, the pointing directions of the three spacecraft axes in ECI coordinates, we can find
the corresponding pitch, roll and yaw as follows. Using a model for the direction of the sun in
l:('I coordinates u,, we calculate the direction of the sun in the hody frame.

xs = ASIC us (13)

Then, quite clearly, from the definition

0 - tan 0. - -tan '11 (14)
X .
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Now, the reference ecliptic vector u, is perpendicular to the spacecraft x-axis us,. and in the
ecliptic plane.

U, T- (k) x (15)

where k is the ECI unit vector and the ambiguity in sign again refers to coafiguration 1 (-) and
configuration 2 (+). Then, since the rotation to be made is one around the spacecraft x-axis,
to which both the spacecraft y-axis and u, are perpendicular, the angle can be calculated from
the angular difference between the spacecraft y-axis v./1 and the ecliptic vector u.

0" = cos- I(Vsic. Ue) (16)

"fhe sign of Ox again deserves attention. If we are in -onfiguration I (configuration 2) and y,/,
is above (below) the ecliptic plane, the sign is negative.

3.0 MODELING THE ATTITUDE

In order to provide a test data set for development of attitude solution algorithms, it is necessary
to perform some sort of simulation of the environmental forces and control laws that will be
used to maintain the attitude. This simulation should provide a test set that is qualitatively
similar to the actual APEX attitude behavior. However, it is not the purpose of this work to
assess the probable degree of attitude control. This is not even possible, since the control
depends to a large extent on the control laws selected. Even at this point, these are subject to
change. In fact, it may be even better if this simulation behaves more erratically than the actual
satellite does, since this presents a greater challenge to the attitude determination algorithms.
In this modeling, then, we will attempt to develop a self-consistent data set that might be typical
of the APEX data, based on our present understanding of the control mechanisms.

3.1 EPHEMERIS MODELING

The first step toward modeling of the attitude and sensor data is the definition of an APEX orbit.
The actual ephemeris, including satellite position and velocity, sun position and magnetic field
in ECI coordinates, was generated from test element sets using the APEX Ephemeris
Computation Program [McNeil, 1992]. The test elements, which are input to the Ephemeris
Computation Program, were generated using the Artificial Satellite Analysis Program (ASAP)
[Kwok, 1987]. Ephemeris files were generated for the first nine days of 1992 using a semi-
major axis of 7572.75 km, an eccentricity of 0.1055, an inclination of 700, argument of perigee
and ascending node were set at 166' and 159.4' respecti 'ely. These nine days represent a good
test of the system since they begin with no eclipses and end with roughly the longest eclipses
that the satellite will experience. Eclipses that take place in these days occur slightly after
apogee and are over before perigee is obtained. To mal - the test sei more comprehensive, we
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have added Case 10, which was generated by shifting the epoch of Case 1. During this day,
eclipse takes place at perigee.

3.2 MODELING ENVIRONMENTAL TORQUES

The largest torque for the APEX satellite arises from atmospheric drag. In keeping with the
simplicity of this simulation, we model the satellite as a cylinder of radius R and half-length L.
Let v be a unit vector in the spacecraft frame in the direction of the velocity and let the
magnitude of the velocity be vm. The cylinder has three surfaces. Assuming the center of
gravity to be at the center of the cylinder, the pressure point for the side is

ps = (0 Rcosao Rsina,) (17)

where oi,=tan-i (vz/vy). The force on this surface is

= -2CDp(h)v2 LRF1 -(v.n) 2 v (18)

where CD is the drag coefficient and p is the atmospheric density at altitude h. The torque
arising from this surface is

2 (19)
= 2CDp(h)v LR2 1 -v sinat, vXJ - cosa v,v k) (9

For the top of the canister, whenever vx > 0, the pressure point is

(L 0 0) =Pt (20)

the force on this surface is

SC(h)R2v2(nv) v (21)

and the torque is given by

r= CDp (h) 7rR 2L Vm Vx (Vj z ) (22)

For the bottom of the canister, when vx < 0, the sign if rt is reversed.

We choose a density model with a simple exponential form

8



, -(23)

p (h) = poeH

Choosing 200 km as the reference altitude, the 1976 US Standard Atmosphere gives p0= 1.0(-10)
kg/mr3 and a scale height chosen to be H=54.3 km extrapolates to a good representation of the
mean neutral density for the APEX altitudes. This model gives a density of about 6(-12) kg/rM3

at perigee.

Although the aerodynamic torque is strongest for APEX near perigee, the eccentricity of the
orbit makes this torque insignificant over the greater part of the orbit when the atmospheric
density drops by several orders of magnitude. The second strongest environmental torque,
arising from the gravity gradient, is much more constant throughout the orbit and stronger than
the aerodynamic torque most of the time. To an adequate approximation [Wertz, 19861, this
torque is given by

TG =L- P X (24)
RS

where Rs is the satellite radius vector, r is a unit vector along the radius vector in the spacecraft
frame, I is the moment of inertia vector and the gravitational constant J =4(5) km 3/s2.

The magnitude of these torques are shown in Figure 3 for a series of typical APEX orbits.
Since the environmental torques are quite small except near perigee, one might expect that the
satellite would obtain near perfect sun-oriented attitude except perhaps during the perigee pass.
We will see, however, that the nature of the control system leads to another situation where
control becomes less than optimum.

3.3 MODELING CONTROL LAWS

Control laws are used to calculate commands to the torque rods and momentum wheel that drive
the satellite toward the desired attitude. For APEX, these laws depend on the current values of
pitch, roll and yaw and on the rates of change of these values. The control laws implemented
in this work are taken from the 30 April 1992 version of Orbital Sciences' code for attitude
determination and control. They are a coupled set of laws involving pitch, yaw and roll as well
as momentum wheel speed. The desired torque rod commands are calculated from

rX = -r,,O6 - r12 -.__ - r l3ASw (25)
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Simulated APEX Environmental 7orqueS

10-

Aero

z 4
10)

, C, G
10-

HN-

"- 'N/i II10-

40.0 42.0 44.0 46.0 48,0 50.0 520 5'4.0 *>-.

Time x 1000 (Sý-C)

Figure 3. Simulated Aerodynamic (Aero) and Gravity Gradient (GG) Torques for the
APEX Satellite.
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where As, is the deviation of the momentum speed from its desired speed. Commands to the
y and z (pitch and yaw) torque rods are calculated from linear combinations of pitch and yaw
rates as follows.

dOy dO.
-k 1 Ol -kl2 Y -k 13 0-kl4

Y1d. (26)
dO dO..

= --21 -it-d 2 dt

It is not possible, however, to apply precisely these torques, since the actual torque will depend
on the direction and magnitude of the external field. The moments to be applied to the torque
rods are calculated from

M =(Ib -) xr (27)

where I b is the magnitude of the measured external field. If any of the components of M
exceed the maximum of 30 Amp-tn 2 , the torque is set to the maximum value for this axis. The
torque rod torques arising from this moment are then

rc = M xb (28)

The command torque to the momentum wheel is calculated from the roll, the roll rate and the
wheel speed as follows.

dOx
_r21 O - -r d-- _ r 23 AS. (29)

The torque in the x-direction to the vehicle is the negative of this value. For the sake of
simplicity, we will ignore changes in momentum wheel speed, taking As,, as zero throughout.
The purpose of including the wheel speed in the control laws is to unload excess momentum.
This is done quite slowly and, for practical purposes, only when the values of pitch, roll and
yaw are small, during apogee passes when the aerodynamic torque is minimal. This process
would probably not change the attitude appreciably. The coefficients used in the modeling are
given in Table 1.

Table 1. Control Law Coefficients

k_ l 0.0810 k12  0.0725 k13  2.9400 k 14  -0.0337

k,_ -0.0723 k, 0.0808 k23  0.0397 k24  2.7030

r__ 2.19(-4) r 1,2 7.19(-2) r2,1  -0.1870 1 r22 -4.5600
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3.4 INCLUDING MAGNETOMETER EFFECTS

In sunlight, the measured values of pitch and yaw and thus the attitude control of the sun angle
is based on the sun sensor measurements alone. The roll angle, 0,, is calculated by comparing
magnetometer data to a model magnetic field. We wish to include the effects of errors in the
calibration of that magnetometer in the simulation, at least in a simple way. Note that the roll
angle reported by the satellite will not include errors in calibration. The reported roll reflects
only the difference between where the spacecraft y-axis ought to be and where the spacecraft
thinks the axis is. An error in calculation of the spacecraft magnetic field will displace both
these angles by a factor that depends on the type of calibration error and on the orientation of
the external magnetic field in the spacecraft frame.

We include a possible calibration error in the simulation by adding to the measured magnetic
field a static internal field Bind. It is quite difficult at this poiilt to determine the precise nature
or magnitude of Bind in practice but, once chosen, tne additional error in roll can be
approximated as follows. Assuming that the pitch and yaw are accurately calculated from the
sun sensor, the measured magnetic field will be

Bmn = Bex + Bind (30)

The induced field is made up of two components, a static part that represents a miscalibration
of the instrument and which could be removed by on-orbit calibration methods, and a time
varying part that arises from operational currents and which will probably not be compensable
in the processing. The second of these is modeled by high frequency sine waves that simulate
random noise. To mimic a random induced field, each axial component is determined from an
amplitude and a period according to

Bri = Brsin (2•'fj TIP) (31)

where f1 is taken to be 1.0, 1.1 and 1.2 for x, y and z respectively and where the period P is
fixed during a simulation. According to the estimates of Orbital Science Corp. engineers
[Barnison, 1992] the magnitude of this field is around 120 nT.

The static component warrants some extra attention and explanation. This represents a less than
perfect knowledge of the 'average' offsets of the magnetometer both in the Attitude
Determination and Control (ADC) system and in the Attitude and Magnetic Field Processing
(AMP) system used to produce attitude and magnetic field data products. Errors in the offsets
in the ADC will affect the attitude itself. We will investigate these errors in what follows, but
generally we will assume that the magnitude of this miscalibration is on the order of the random
component, perhaps 200 nT. We will not assume a priori knowledge of the offsets in the
magnetic field calibration algorithms to be presented later. Thus so far as the AMP processing
is concerned, the addition of a static offset does nothing more than change the values resulting
from the calculation.

12



The effect of these induced fields on attitude control will probably be similar to the following.
In the attitude determination and control code, the roll is calculated by projecting the measured
and model magnetic fields into the spacecraft yz-plane and taking the angle between them. The
induced field will thus lead to an angular error equal to

EX = + BymByexi + BzmBzext (32)' 2 + " 1/1 (B•,x 2 Betl2

(Bi, + _L,". + Bz) 1

with the sign being determined by the cross product of the two. This error in the on-board
attitude solution is simulated by modification of the value of 0, in the control laws

0. = 0x - Ex (33)

3.5 ECLIPSE CONTROL LAWS

During eclipse, when data from the sun sensor is not available, the current attitude of all three
axes is calculated from magnetometer data alone. The attitude control is no less efficient in
eclipse than in sunlight, however, the error in attitude knowledge results in a pointing error
depending on the accuracy of the magnetometer calibration and the specifics of the methods used
to calculate attitude. We will ignore these specifics for simplicity's sake and model the effect
by the subtraction of the values

(V = sin- 1 Bindy Ez = sin-' Bindz (34)
Bextyz Bext.yz

from the values of 03y and 0, in the control laws during eclipse. byz is the projection of the
magnetic field vector onto the spacecraft yz-plane. These are probably 'worst case' expressions
for the angular error in that the error is taken to be the perpendicular component of the induced
field and no filtering or complicated attitude calculation techniques are assumed.

3.6 EQUATIONS OF MOTION

The rotation rates about the three spacecraft axes, wi, vary in time according to

dt
d ( W * w r n c -7 c on tr o t - ( 4 X 1 U - W X h ( 3 5 )

where h is the angular momentum of the momentum wheel. Assuming that the moment of
inertia tensor is diagonal, the tensor equations reduce to linear ones.

13



dt rx - - )

dt

]z dtw = + (lQ -lx)cxc + h - (36)
dto

The moments of inertia used are as follows.

Ix = 49 km-mr2  Iy = 72 km-rn I2 = 61 kg-mr2

The momentum wheel angular momentum, entirely in the spacecraft x-direction, is taken at 4
Nms. Beginning with w=O we can follow the evolution of 0 through

dO= dOy _ dO

dt •X d• y -- t 3

These relations are not quite correct since Ox, 0,, and 0z are measured in a system that is not
quite inertial. However, since the motion of the sun in the inertial system is quite small on time
scales of the attitude changes, this formulation should suffice. These equations are coupled since
the torques depend upon the 0 angles. They can be solved by any standard technique for
differential equations. We choose a fourth-order Runge-Kutta for this work. Following the
intended scheme in the actual spacecraft, the attitude is sampled for one-fifth second then driven
with the torque rods and momentum wheel for the remainder of the second.

3.7 SIMULATION RESULTS

In this section, we discuss some of the important features that derive from the model discussed
above. First, in Figure 4, we show pitch and yaw for a series of about three orbits which are
entirely sunlit. The attitude angles exhibit their greatest deviation at perigee, and the degree of
this deviation is to some extent dependent on the direction of the external magnetic field. This
arises because correction of pitch and yaw errors becomes increasingly more difficult when the
magnetic field lies near the spacecraft yz-plane. One sees some substantial deviations even near
apogee when this is the case. The bottom panel gives the ratio of x-axis field to total field. The
legend in that and the following figures should be interpreted as follows: T, is the control
period in seconds, T, is the sampling period in seconds, Bi is the static induced magnetic field,
Br is the "random" induced magnetic field and P is the period of the random field in seconds.

In Figure 5, we show the roll axis angle for the same time period with various magnitudes and
frequencies of the time -varying induced fields. The bottom panel shows the case with no
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induced field. Here, the roll follows a pattern much the same as pitch and yaw with the
exception that the deviations from nominal operation (roll equals zero) are less severe. This is
because roll control is based mainly on momentum wheel speed changes and is thus more easily
controlled. The second panel, with time varying induced fields of 120 nT with period of 10
minutes, show.i deviations from zero that can be thought of as arising mostly from errors in the
calculated attitude (roll) due to the induced field. It is important to keep in mind that the
magnitude of the control error is dependent entirely on the magnitude of the induced field and,
should induced fields turn out to be larger than expected, errors in control and in calculation of
the attitude would be larger as well. Another interesting result is seen in the top panel of Figure
5, where we have chosen a frequency less than the response time of the attitude control system.
In this case, the roll remains nearer the desired value since the induced field has fluctuated in
the other direction before the satellite has had time to respond to the erroneous measured field.

Figure 6 shows the roll attitude for induced fields (calibration errors) of 100, 200 and 500 nT.
The magnitude of the error of any particular point is a function of the direction of the external
field and its magnitude. As a rule of thumb, however, errors can reach sin '(bi/byz) where b,
is the induced field and byz the magnitude of the external field in the yz plane of the spacecraft.
This relation applies equally well to the time varying fields. The essential difference between
time varying and static fields is, again, that there is some hope of removing static fields through
calibration. Time varying fields, on the other hand, will be more or less invisible to the attitude
user since it will be impossible to distinguish between actual roll errors and errors introduced
by dynamic fields. We note that the filtering and weighting techniques employed in the on-board
solution will almost certainly reduce these errors in practice.

For completeness, we show in Figure 7 the calculated torque rod commands that give rise to the
attitude control shown in the previous figures. The torque rods are maximum near apogee and
at times when the magnetic field is nearly perpendicular to the spacecraft x-axis, as discussed
previously. The maximum torques do not exceed the 30 A-mi2 limit imposed by their design.

Finally, in Figure 8 we show the pitch and yaw angles during a series of orbits in which there
is an eclipse. The eclipse period is shown by negative values of the solar depression angle in
the bottom panel. The roll angle in this case is not substantially different from those shown
previously. This is merely one example of what the attitude behavior might be during eclipse,
and substantial variations may be expected due to position of the eclipse within the orbit and the
magnitude and time dependance of the induced fields. First, there is a sharp transition from
high precision sunlit attitude control to eclipse attitude control. This is reasonable since the
attitude is controlled with relatively high precision by the attitude values calculated on-board.
These change discontinuously as eclipse is entered due to the errors introduced by induced fields.
More importantly perhaps is the realization that the excursions of the attitude from nominal
values during eclipse is dependent mainly on the induced fields. Since these cannot be well
predicted at this point, and since attitude determination during eclipse must necessarily involve
the parameterization of the attitude behavior over time, it would seem best to limit a priori
assumptions about the attitude behavior as much as possible. We return to this point when we
discuss the attitude solution in eclipse.
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3.8 SIMULATION OF INSTRUMENTS

The simulation of the data stream from the satellite is quite straightforward, given the
assumptions of this model. The times chosen are 60 seconds apart at some arbitrary whole
second. All measurements are assumed to be coincident in time. The magnetometer values are
derived from

Mi = TRUNC([bt,i I bid, i + 60000.0]/g, + 0.5) (38)

where TRUNC reduces the number to the nearest integer of lesser value. gi is the gain factor
for the magnetometer ?ais in nT/count. In this work, we will make the assumption that all gain
factors are equal, but that the gain factor is unknown. As some justification, we cite the
magnetometer aboard CRRES. There, gains were matched to approximately .08 nT/count with
gains at approximately 22 nT/count. In a field of 30,000 iT, this amounts to approximately one
hundred nT maximum, which is near the expected n, ",. level of the system. Should it appear
from ground test data, however, that the gains of the instrument are substantially mismatched,
the calibration algorithms could easily be modified by multiplication of two of the sensors by
the ground measured ratios. The nominal gain of the instrument is 1.831 nT/count.

The sun sensor values are taken directly from the values of pitch and yaw, since these are direct
measurements for APEX. The natural mcasurements of the sun sensors are [Space Sciences,
1991] the tangents of the angles

r. -tanO, r, = tanOv (39)

The full scale value of the sun sensor N is 20479 and the digital signal produced is

n = TRUNC( r/ 5 + 10240 + 0.5) (40)

where
2 tan~max (1o = - -= 2.002450(-4) (41)

N+l

when 0 max is 640. The sun sensor values are inserted in the simulated telemetry whenever the
solar depression angle is greater than zero. Also produced is a flag which indicates whether the
sun sensor can see the sun.
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4.0 ATTITUDE SOLUTION ALGORITHMS

Having simulated the satellite orbit, attitude and instrument readings, we now turn to algorithms
for processing these signals. Attitude solutions for APEX come entirely from combinations of
sun sensor and magnetometer readings. In sunlight, the pitch and yaw angles are measured
directly from the sun sensor data, with roll being calculated from these angles and the magnetic
field measurements. In eclipse, all three axes are calculated from magnetometer data alone.
Hence, it should be apparent that the calibration of the magnetometer is of critical importance
in the enhancement of the accuracy of the attitude calculations. We deal with this issue first.

4.1 MAGNETOMETER CALIBRATION

In our simulation, the magnetometer is assumed to be aligned perfectly with the spacecraft axes,
but to have unknown offsets, different for all three axes, and an unknown gain factor, which is
equal for all three axes. The measured counts in each axis will be converted to the field in nT
along the axis through the expression

bi = Mi * g - di (42)

We are somewhat limited in the use of on-orbit calibration methods by the fact that the satellite
does not spin and remains more or less fixed inertially in all three axes. Calibrations can be
carried out by comparison of the magnitude of the measured field with a model field. This
method involves minimization of the function

F(gd',dydz) = E [b2 - (gMx -dx) 2 
- (gMy -dyd)2 - (gM Z -d) 2 ]2  (43)

with respect g and the di's, where bm is the magnitude of a model for the field at the satellite
position. In principle, a single minimization could be carried out on all four variables, however,
the problem is better conditioned if we alternate between minimization of the gain g and the
offsets di. Minimization is carried out by finding the zero of

1dF 2 2 _ (gMy _-d)2)- (gM. -d..) 2d-(44)
4 dg f. - (44)

X [ (gMx - dx)M x + (gMy - dy)Ml, + (gMz - dz)M.J

for the gain and

I dF -fx : O --(gM d gM-d) 3

4 ddý, , ) ,(M (45)
-E_ (gMý'-d,) (gMy -dy)2-, (gM, -adx)(gM - dz)2

for the offsets. These are quite easily carried out by a Newton-Raphson search technique.
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In order to test this algorithm, we selected a relatively short portion of data comprising about
three orbits. Static induced fields were set at about 200 nT and random high frequency fields
at 120 nT along each axis. The procedure would most likely be carried out infrequently over
small portions of a day's data, as was done here. The calculation took initial guesses of g = 1.8
nT/count and di=60,000 nT. Figure 9 shows the difference in measured and model field with
calibrated and uncalibrated results. The header shows that the gain is calculated to better than
1 part in 2000. The values of di in the header represent 60,000 plus the static induced field (or
calibration error). The twice-per-orbit oscillation in the lower uncalibrated panel is the effect
on which the calibration algorithm relies. It is the result of variation in the direction of the
background field with respect to the induced field, which stays relatively constant in inertial
space.

It is perhaps not too impressive at first glance that calibration has reduced the error from a
maximum of 300 nT to 150 nT or so, however, the 150 nT error in the top panel is almost
entirely the result of the time varying induced fields, which we were never expecting to remove.
Also, it is satisfying to note that the method works when static fields (calibration errors) are not
significantly larger than the random components. A second example is shown in Figure 10.
Here, we have assumed a static component of 500 nT in magnitude. For reference, static
induced fields on the CRRES satellite were measured at around 200 nT in magnitude. CRRES
was, however, a particularly clean satellite. On the other hand, the magnetometer on APEX is
situated 24" from the payload shelf, which reduces magnetic contamination. In practice, the
differentiation between static and variable fields may not be straightforward. It may well turn
out that certain long period events, such as ground transmission, cause large static fields during
the duration. It is possible that these events could be identified in telemetry, and calibration
could be carried both with and without, giving an extra set of offsets that could be used during
the interval to improve the resulting magnetic field and attitude.

We should take note of a couple more things in relation to magnetometer calibration. First,
plots like Figure 9 can be very useful in assessing the magnitude and frequency of induced
fields, which we have seen can effect attitude control and which will turn out to be important
in the assessment of the accuracy of the attitude determination. A final point pertains to
alignment errors in the instrument. The procedure above does not rely on the alignment of the
instrument with any particular spacecraft axis, but the resulting attitude and measured magnetic
field when used to calculate pitch angle certainly do. We do not propose on-orbit calibrations
for alignments. However, alignment test results should be available with which one can put
upper bounds on the errors. Presumably, these will be insignificant. For reference, the
engineering magnetometer aboard CRRES was aligned to about one-quarter degree.

4.2 ATTITUDE SOLUTIONS IN SUN LIGHT

When the satellite is in full sun, we have at our disposal two measiired vectors in the spacecraft
frame, the sun and the magnetic field. A straightforward and standard technique [Wertz, 19781
that can be used for three-axis attitude in this case is as follows:
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Figure 9. Difference between measured and model field with a 200 nT induced field.
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A triad of vectors is formed from the sun vector s and the magnetic field vector b

a =S
S= sxbli x blI (46)

in both the body frame (B) and, using models for sun and magnetic field vectors, in the inertial
frame (I). Forming the matrices

Mb = [UB VB WBl M 1 =[U1 VW 1 ] (47)

we can specify the attitude matrix completely by

AM, = MB (48)

and because of orthogonality

TEM (49)A = MBMIt(9

giving a simple and unique solution for the attitude. From there, the results of §2.2 can be used
to obtain pitch, yaw and roll. Since we use the sun vector as a basis vector, the resulting pitch
and yaw are identical to the measurements of the sun sensor and the inherent high accuracy of
these measurements has been preserved by the algorithm.

We should note that the OSC algorithm for calculation of roll angle in sunlight differs slightly
from the one presented above [Orbital Sciences, 19921. Their method involves calculating the
angle between the magnetic field measured in the yz-plane and the field in a sun and ecliptic
coordinate system. The two methods become identical when the satellite x-axis points directly
at the sun and the difference in roll is negligible whenever the values of pitch and yaw are less
than a few degrees.

To explore the results of this algorithm on the simulated data, we chose a relatively strong static
induced field of 500 nT and a 120 nT time varying field with frequency high enough so that the
field appears as noise in the magnetometer data. Figure 11 shows the pitch and yaw angles that
result from the above scheme and the deviations of these results from the actual pitch and yaw.
The errors are near the noise level of the sun sensor, since these are direct measurements. The
uncertainty in the values of pitch and yaw during sunlit operation, then, will be limited by the
resolution of the sun sensor. In practice, this limitation would also include mounting errors.
Judging from measurements of the alignments for the CRRES satellite [Ball Aerospace, 1990]
it would appear that typical values for this error are somewhat less than 0.20. Since this is much
greater than the resolution of the instrument, we will assign a probable uncertainty of pitch and
yaw in sunlight to around 0.20.
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Moving on to the roll axis, we show in Figure 12 the roll angle during the same period.
Concentrating first on the actual roll, we sef 'hat the static field of 500 nT has introduced a
control error of up to four degrees in roll. ., notable aspect, though, is that when roll is
calculated without correction for this static field, the value of roll appears to be substantially
better than it actually is. This is because the same erroneous cffsets were used in the control
and in the calculation. This result emphasizes the importance of adequate magnetometer
calibration for attitude knowledge, and points out the danger inherent in the use of on-board
solutions without verification. Moving on to the calibrated solution, we see another interesting
result. Although the solution is in agreement with the actual roll on average, it exhibits the
same sort of random jumps as does the uncalibrated solution. This is due to the time varying
induced field component, which is not removed by calibration. It is interesting that the actual
roll does not undergo these oscillations. As discussed before, the control mechanism acts as a
filter for high frequency modulations whenever the period is shorter than the time it takes thc
system to correct for an attitude error. Finally in Figure 13 we show the error in the roll
calculation for this case, using the calibrated magnetic field data. The degree or so error is
typical of the maximum effect of a 120 nT field.

It appears, then, that we are able to calculate the roll axis in sunlight to an accuracy limited by
the "unremovable" spacecraft induced fields. It should be kept in mind, though, that the
magnitude of these fields are at present unknown. The case presented above is unique to an
induced field of around 100 nT. Repeating the above case with values of Br set at 200 and 500
nT leads to maximum errors of 2.50 and 5.0' respectively. The nature of the "unremovable"
induced field can be inferred to some degree from compatibility tests as well as on-orbit
evaluations by observation of the variation of the measured magnetic field values.

Another issue of importance so far as error analysis is concerned arises from errors in the
ephemeris and/or timing of the measurements. Whenever a relatively rapidly changing vector,
such as the magnetic field, is used for reference, there is an error relating to the difference in
calculated position and time and actual position and time. This is quite easy to investigate in
the simulation by substituting the magnetic field calculated for a later time in the attitude
determination. Figure 14 shows the results of this investigation. Figure 14 was generated with
no induced fields at all, so we would expect all the error to be due to timing. This figure also
serves to demonstrate the integrity of the simulation and calculation, since it shows an extremely
small deviation due to the 1.8 nT resolution of the magnetometer in the simulation. For I and
2 second errors in timing, we see maximum errors of around 0.2 and 0.5 degrees respectively.
For reference, the accuracy of the ephemeris will probably exceed 5 km in-track error [McNeil,
1992]. This puts the probable error from this source at around 0. 1 degree maximum, since it
amounts to about one-half second timing error.

Finally, the issue of the accuracy of the model field is always of importance when dealing with
attitude derived from magnetometer measurements. It is our belief that a full IGRF model field
extrapolated to date yields a field vector that is accurate to about 0. 1 below, say, 4000 km or
so. However, there are others who would set this error as high as 1.0'. Attempting to combine
these error sources yields but one unknown, the "unremovable" induced fields. Using CRRES
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Figure 12. Roll axis angle, actual and calculated with and without calibration.
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Figure 13. Roll axis error in sunlight with calibrated magnetometer.
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again as a reference, the fields will be something around 100 nT at the magnetometer. Adding
the ever present mounting error of 0.20 and taking the higher of the estimates for model field
error, we find that the error in the calculated roll in sunlight may reach as high as 3'.

4.3 ATTITUDE SOLUTIONS IN ECLIPSE

Before describing a solution method for the attitude during eclipse, let us take a closer look at
the attitude behavior. Figure 15 shows pitch, yaw and roll during one typical eclipse and
slightly before and after. The eclipse actually begins at around 6200 seconds and ends at about
7600 seconds. A rather large static induced field of 500 nT was chosen for this run in order to
accentuate the deviations from nominal operation. As the satellite enters eclipse, we see the
effects of induced field in larger deviations in the pitch and yaw. Of note, however, is the fact
that these deviations are relatively smoothly varying in time, depending for the most part on the
direction of the magnetic field relative to the spacecraft. After entering sunlight again, we see
that the control mechanisms require about four minutes to return pitch and yaw to near zero.

One of the most important aspects of the attitude solution during eclipse is that the only
reference vector available is the measured magnetic field. One reference vector is not enough
to uniquely specify the attitude at any moment. Therefore, a series of measurements must be
combined to yield an attitude estimate. There are two popular methods of doing this [Wertz,
1986]. These are batch estimators and Kalman filters. In a batch estimator, a model of the
observations, in this case the magnetometer readings taken during a certain period of time, is
created from a parameterized state vector x(t). These model measurements gi(x(ti)), are then
compared to the actual measurements yi. The loss function

J = Ei [yi - gi(x(ti))]2  (50)

is minimized with respect to the state vector x in its particular parameterization. The model may
vary in complexity from a constant attitude to one which includes derivatives of the state vector
based on modeled environmental and control torques. The Kalman filter estimates the state
vector x(tk) based upon the measurements yi up to and including Yk, and on changes modeled
and/or measured in the state vector between measurements.

We have opted for the batch least-squares approach for several reasons, although a Kalman filter
will be used for on-board attitude calculation. First, we have seen that an induced field can lead
to a relatively rapid change in attitude at the beginning of eclipses. Since the Kalman filter
would require pre-eclipse data while the least-squares would not, using the later relieves us from
any problems arising from a sudden attitude change. Also, in processing data by APEX periods,
which may well begin or end in eclipse, a Kalman filter would require us to save data from
other periods and to process sequentially while a least squares type would not. Finally, since
post-flight attitude computation is intended mainly for verification of the on-board attitude, it
makes some sense to employ an entirely different method because, as we have seen, attitude
calculation and control are intimately linked.
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Another thing to consider is that the complexity of the model g(x) is generally inversely
proportional to the difficulty in obtaining convergence. In the present application, a simple
model that achieves reasonable accuracy with relative ease is preferable to a more complicated
one of higher accuracy but which is more sensitive to initial guess and requires more careful
convergence, since the adopted method may have to be run repeatedly in Latch mode. A
recalcitrant model could easily bog down the data processing. The model presented here has
been designed with these considerations in mind.

In the simplest possible approach, we can approximate the attitude as a constant over some
interval. The attitude is modeled in ECI coordinates by the right ascension Ot and declination
6 of the spacecraft x-axis and by a phase 0 of rotation around this axis. One representation of
the attitude is [McNeil and Singer, 1986]

cosoecos6 sir "cos6 sin6

A4 = sincosasin+ sinucos,• sin~sincasinc, -coscycosý -cossinoj (51)

_sin~cosoacos - sinusin(ý sin~sincucoso cosusin( - cosbcoso

This parameterization has been chosen so that the nominal vJues of the attitude correspond to
U•S= and 6=6., the right ascension and declination of the sun, ,;=0 in configuration 1 and
,= 1800 in configuration 2. The function to be minimized is taken to be

I = K (nxi -xbi)2 + Ji (mt, _.-bi)2 + Ei (min 1 - ý'bj)2 (52)

where m, is the i'th component of the measured magnetic field and bi tihe 'th component of the
field in inertial coordinates. The function is minimized by finding the zeros of the three
simultaneous equations, the first of which is

F - T" =E, (m.i - br,,C.C 3 - b, S.iC6 - b-iS3)(bV,1SfC6 - byiCC)

,(, , - ,,C SS - b a.jS ,Co -b aS6S¢, -+ by. C .C O b bz~iC 6S ))x

( .,S 5S) - hXiCCo -h CSS - b S SC)

S- ', SCS, b., h C,,SS h' CSSd C, - +C, j .,CCo)X

Where C stands for cosine and S for sine. The other two equations, F6 and Fo are obtained in
the same way by differentiation of Eq(52) with respect to the appropriate variable. In the
algorithm, the solution is found by a Newton-Raphson search technique, using numerical
derivatives of the F,. As a first guess, we assume that the spacecraft x-axis points at the sun and
that the phase angle is zero. This calculation is carried out in a moving window, wth the
attitude at the midpoint assigned the v'.lue of the result of the calculation at that window. In
order to include points at the beginning and end of the eclipse as midpoints of a window, we
simply start a few minutes before Lnd end a feA minutes after the eclipse.
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In the following paragraphs, we explore the behavior of this solution in the various situations
of the test cases. In the first example, we assume, a 'random' field of 120 nT to test the
response of the solution to noise. After that, we set the 'random' field to zero to better assess
th,." characteristics of the solution without this complication. The static field is taken to be 500
nT and results of calibration of the magnetometer, discussed earlier, are used in all calculations.
As we recall, 500 nT is probably somewhat excessive and constitutes therefore a 'worst case'
insofar as the deviations of satellite operation from nominal.

In Figure 16 we show the solution for the eclipse presented in the previous figure. In one sense,
at first glance, it is somewhat disappointing that we see errors of a degree or so in quantities,
pitch, yaw, and roll, that are themselves only a few degrees in magnitude. However, we should
consider these results in light of the inherent difficulty of specifying a changing attitude through
the use of a set of single vector measurements. This is never a very happy situation. When the
attitude changes, the best solution may not be the average attitude throughout the window. We
have selected a seven minute window for Figure 16. Reduciig the window would allow for a
somewhat better result, but would also increase the noise level due to the random fields. With
a three parameter model, we can use as few as three points. The actual choice in practice will
depend to some extent on the noise level of the instrument. In any case, we can certainly
conclude from Figure 16 that the ,-ellite is operating normally, which is the main issue.

The solution is in error in proportion to the rapidity with which the attitude changes within a
window. If the satellite remains within specified operating range, these changes will be small
as in Figure 16 and the solution obtained will reflect proper operation, with errors of a degree
or two. It is also approximately the same as that expected from the 100 nT or so 'random'
induced fields. Improvements to the results of Figure 16 do not come easily. Adding
parameters for time varying attitude requires increase in the window size for convergence and
uniqueness. This in turn simply means that the attitude changes more within the window, giving
results that are not substantially better. We have opted to stick with a constant parameterization
and a relatively short window. In the following, we investigate the associated errors in several
situations.

An interesting situation that is in some ways 'worst case' occurs in the second eclipse of Case
10. The attitude and the solution provided by the above algorithm are shown in Figure 17. We
have chosen a three minute window for this calculation, which would be desirable whenever
changes in attitude are greater than the instrument noise level. The effect is concentrated in the
roll axis (0,) which can be seen to change rapidly at around 10,300 seconds UT. The reason
is as follows. At that time, the magnetic field vector becomes nearly parallel to the spacecraft
x-axis. This means that the spacecraft induced fields create a disproportionate angular error in
the calculated roll. Even thot gh the inclusion of induced fields in this simulation is somewhat
artificial, there seems to be no reason why this effect should not be observed in practice to some
extent. As the error increases, first in a positive sense then inflecting to the negative side, the
satellite compensates for the erroneous calculated roll. Compensation and hcnce attitude change
in the roll is rapid since the momentum wheel can act somewhat more efficiently than can the
torque rods. Thus this effect would not be observed to so great an extent when the magnetic
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Figure 16. Best fit constant attitude solution with 7 points/fit.
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field is perpendicular to the spacecraft x-axis instead. Although the solution has pretty much
missed the rapid roll change, it at least reflects some aberrant behavior in roll.

Although this case gives rise to a rather large angular error in the calculated attitude, it too must
be considered in light of the possibilities at hand. We believe that there is virtually no way to
do substantially better when the attitude changes by 100 or so in the course of a few minutes.
At least the solution has produced an attitude that is within a couple of degrees of correct for
the x-axis (0y and O0) and has given us something near the average for the roll. This brings up
another feature of the parameterization worth mentioning. The values of a and 3 are determined
primarily from the measurement of the spacecraft x-axis magnetic field. Had we solved using
only these two parameters, that is,

J - (m,,i - (x. bi)) 2  (54)

we would have obtained almost identical results to those in Figure 17. This is nice in that there
may well be motion in roll that is not echoed in pitch and yaw, and vice versa.

We should also test the solution algorithm on some very anomalous cases, since one of the major
objectives of post-flight attitude determination is to verify nominal operation. One way to
simulate non-nominal behavior is to increase the value of the static induced field B1 . In Figure
18, we show an eclipse for which Bi=2000 nT. Again, since changes in .:ttitude are large, we
have used a short window. In this case, the roll and 0y both exceed the 50 nominal limit.
Although the rapid changes in roll cause the roll axis to be calculated with errors of up to about
50, we see again that the error does not propagate strongly into the pitch and yaw calculations,
where errors are nearer 20. More importantly, the fact that the attitude exceeds the nominal
limits in this case is evident from the calculated results. The last four points are, as usual, in
substantially larger error due to the fact that they require post-eclipse points for their calculation.
The pitch and yaw change rapidly after eclipse, recovering the sun within about four minutes.

As another test of the method in extremes, we look at the attitude that results from abandoning
all attempts at control during eclipse. One such eclipse and the resulting solution is shown in
Figure 19. We see that the pitch and yaw are relatively constant throughout and the roll error
increases about linearly as the momentum wheel transfers the spin of the pitch and yaw axes to
the roll axis. Although this is probably not an actual operational possibility, it is similar to the
so called 'safe-hold' mode that will go into operation as a result of numerous anomalous
conditions. In this mode, the roll axis is not controlled at all and will drift as in Figure 19.
Pitch and yaw are controlled through torque rod operation and should remain small. We see in
Figure 19 that the rapid change in roll (or 4) leads to errors of about 20 in the pitch and yaw
determinations.

When in safe-hold mode, or at any other time when variation in roll greatly exceeds variation
in pitch and yaw, there is a simple way to increase the accuracy of these solutions. If we let
the variable 4(t) be parameterized by a constant and a linear term,
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Figure 18. Attitude and solution (symbols) for a non-nominal case.
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Figure 19. Attitude and constant solution for no control during eclipse.
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0b(t) = •0 + Olt (55)

and minimize with respect to the four variable parameterization, we obtain the results in Figure
20. Due to the clean separation of .0 from a and 6 in the problem, this set is also quite easy to
minimize without convergence problems. As can be seen, the solution is quite good, until the
final few points which suffer from the rapid reacquisition of nominal attitude immediately after
eclipse. We will include this option in the solution package for use in safe-hold mode. Since
changes in roll under normal operating conditions are often no more than those in pitch and yaw,
use of this method there would probably not result in substantial improvement.

In summary, it appears that this method is capable of producing results accurate to around 2-3'
when the attitude stays within nominal operational constraints. The method will thus be adequate
for verification of nominal operation. Should the attitude stray greatly from nominal during
eclipse, the error inherent in the calculation also will increase, at least with larger rates of
change of the attitude parameters. However, the resulting attitude appears to be of adequate
quality to judge the approximate degree of deviation from nominal. Errors are approximately
the magnitude of the change in any attitude parameters within the window. In safe-hold mode,
the addition of a linear term in roll removes the error due to rapidly changing roll. These
algorithms appear as the methods of choice, since they are adequate for control assessment, do
not require initial values and are rapidly convergent.

5.0 EVALUATION OF ON-BOARD ATTITUDE

In addition to the verification of nominal operations, we must decide in the course of attitude
processing whether the post-flight or the on-board attitude best represents the actual attitude.
Discretionally, either one or the other will be included on Agency Tapes for the perusal of
experimenters. During sunlight operations, this decision presents no great problem since,
barring magnetometer calibration problems, the two solutions should be identical. The decision
then shifts to one of which set of calibration factors are the best. This can be evaluated
independently by comparison with model fields.

In eclipse, we are faced with a more difficult problem. What, for example, if we plotted the
on-board and post-flight solutions and came up with something like Figure 16, with agreement
to about 2-3"? There is a way by which we can at least verify the self-consistency of the on-
board solution. Accompanying the on-board pitch, yaw and roll data will be rates of change of
pitch, yaw and roll. We can use these to approximate the rates of change in a, 5 and 4) and
thereby greatly increase the level of accuracy of our parameterization. These rates of change
are given by
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Figure 20. Same as Figure 19 but with a linear term in 4
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dot dt dt dt dt

In the eclipse algorithm, we minimize a0 + act, etc. where a1 remains fixed at the reported rate
of change given in telemetry. Should this give rise to a solution more like the on-board solution,
assuming that both solutions are comparable, we would be inclined to elect the on-board solution
for Agency Tape generation. Figure 21 repeats the eclipse of Figure 16 but with fixed
derivatives obtained from the attitude simulation. Should the on-board and post-flight attitude
come out markedly different, however, the self-consistency of the on-board attitude and rates
is not a sufficient indication of the better quality of the on-board solution.

6.0 CONCLUSION

We have modeled the APEX ephemeris and attitude over the course of several days,
encompassing a variety of situations and have observed the response of the satellite using
realistic environmental and control torques. Using these results, algorithms have been developed
and tested for magnetometer calibration and for attitude solution. Although the results of this
model may well be substantially different from the actual attitude behavior, we believe that the
relative success of the computations on simulated data will be reflected in the experience with
real data. The verification of the sun to solar panel angle during sunlit operations is
straightforward and should be accurate to a few tenths of a degree. It appears to be possible to
calculate the roll angle in sunlight and the three attitude angles during eclipse to a precision of
perhaps a factor of two higher than the nominal allowed deviations of 50 in the attitude.
Although, for verification purposes, a larger margin would be preferable, the present situation
allows for the determination of attitude control with reasonable confidence.

In closing, we should reiterate the importance of this type of simulation in the development of
attitude determination software. Although it may appear somewhat overly complicated and even
repetitive, since OSC has also performed these types of simulations, it is altogether necessary.
Without simulation of the environmental torques along with the restoring torques commanded
by the actual control laws, we would be left with considerable uncertainty in the definition of
the attitude itself. Without simulation, too, we would have no indication of the degree or rate
of attitude change during eclipse, and thus would not be able to evaluate the effectiveness of the
chosen solution algorithm. Assuming a constant attitude, for example, would have led to a
result in precise agreement with the attitude. We have seen, however, that errors in practice
may be substantially larger, but still tolerable. The fact that we have tested the proposed
algorithms, along with the general familiarity with the expected attitude and sensor data
conferred by simulation, gives us considerably more confidence of successful and expedient
evaluation of the actual attitude data, once it is in hand.
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Figure 21. Case 9 Eclipse 2 solution, calculated with 'known' rates of change.
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Appendix - State Vectors

The following state vectors were used to generate the ephemeris for this study. The
coordinate system is true-of-date Earth Centered Inertial.

Year Day Second Rev I
X(km) Y(km) Z(km) Vx(km/s) Vy(km/s) Vz(km/s)

91 0 0.000 1 0.0000
5922.681152 -2312.936035 2227.808838 3.38994217 1.82176983 -7.11462641

91 1 0.000 14 0.0000
333.102753 2673.440674 -7309.891602 -6.71503830 2.03565097 -0.30837882

91 2 n.000 27 0.0000
-7843.144043 2569.690186 -104.129593 -0.50028402 -2.21145177 6.20766211

91 3 0.000 41 0.0000
-34.582718 -2538.974121 6590.689941 7.30961275 -2.06632018 -1.46704304

91 4 0.000 54 0.0000
5658.311035 -571.851929 -4303.395020 -3.25924301 3.62198353 -5.92411470

91 5 0.000 67 0.0000
-4664.481445 4196.505859 -5401.880859 -4.96536970 0.47305381 4.29641962

91 6 0.000 81 0.0000
-5845.307617 798.506714 4966.917480 4.15876436 -3.75541592 4.36136055

91 7 0.000 94 0.0000
5229.038086 -3639.860840 2209.513184 3.78598666 0.92756629 -7.07966566

91 8 0.000 107 0.0000
1119.718994 2464.516357 -7403.245117 -5.94886065 3.54509449 -0.41860914

91 9 0.000 120 0.0000
-6939.483398 4365.214844 -279.218292 -1.07204473 -2.01031303 6.25145912

91 10 0.000 134 0.0000
-394.175568 -2558.539063 6460.285645 6.71218014 -3.69477177 -1.67764628

91 11 0.000 147 0.0000
5339.558594 -1731.985596 -4604.779297 -2.48622346 4.29536104 -5.67568588
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